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Nearest Neighbor Search

1. Build a data structure for a
given set of points in Rd. ®

2. (Repeated) For a given query, e ‘/
find the closest point in the
dataset with "good” probabillity.

Main goal: fast queries with high accuracy.



Motivation

Large number of applications

Data retrieval

* Images (SIFT, ...)

o T[ext (tf-idf, ...)

e Audio (i-vectors, ...)
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Large number of applications

Data retrieval

* Images (SIFT, ...)

o T[ext (tf-idf, ...)

e Audio (i-vectors, ...)

Sub-routine in other algorithms
e Optimization

* Cryptanalysis

e (Classification



A Simple Problem?

In 2D: Voronoi diagram

 O(nlog n) setup time

* O(log n) query time

Almost Ideal data structure!




A Simple Problem?

In 2D: Voronoi diagram

* O(nlog n) setup time

* O(log n) query time

Almost Ideal data structure!

Problem?

Many applications require
high-dimensional spaces.

= “Curse of dimensionality”




Rescue from high Dimensionality

Real data often has structure. et
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Example: significant gap o o

between distance from query to e
* nearest neighbor o .

+average point



Common Methods

ree data structures

Locality-sensitive hashing

Vector guantization

Nearest-neighbor graphs




1. Locality-Sensitive Hashing
2. (Cross-Polytope Hash

3. LSH in Neural Networks



1. Locality-Sensitive Hashing



Formal Problem

Spherical case
* Points are on the unit sphere.

/
[

* Angles between most points &

around 90°. A\



Formal Problem

Spherical case AT TN

* Points are on the unit sphere. f/ S TERR }

* Angles between most points Aelag GRS %Y
around 90°. N\ CEC

Why?
 Theory: general case reduces to this case.
* Practice: good model for many (pre-processed) instances.



Formal Problem

Similarity Measures (all equivalent here):

» Cosine Similarity
 Angular Distance Nearest
* Euclidean Distance Neighbor ~ Query

Why? Often (approximately) the goal in practice.



|_ocality-Sensitive Hashing

Introduced in [Indyk, Motwani, 1998].

Main idea: partition R9 randomly such
that nearby points are more likely to
appear in the same cell of the partition.




|_ocality-Sensitive Hashing

Introduced in [Indyk, Motwani, 1998].

Main idea: partition R9 randomly such
that nearby points are more likely to
appear in the same cell of the partition.

What about hash functions”

Random hash function
= random space partitioning




| SH: Formal Definition

A tamily of hash functions is (r, ¢ r, p1, p2)-locality sensitive

if for every p, g in R9, the following holds:

* if||[p-qall <r then P[h(p) = h(a)] > p

* if|[p-q]| >cr, then P[h(p) = h(g)] < p>

collision prob.
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| SH: Data Structure

Multiple hash tables with independent hash functions.

§

TR PP,
TR T o °

Query
1. Find candidates in hash buckets h(Q).

2. Compute exact distances for candidates.



| SH: Theory

Query time quantified as a function of sensitivity p.

Intuitively: gap between “nearby” collision probability
and “tar away” collision probability.

og1/p1
0g1/p2

Formally: p =




| SH: Theory

Query time quantified as a function of sensitivity p.

Intuitively: gap between “nearby” collision probability
and “tar away” collision probability.

og1/p1
0g1/p2

Formally: p =

For example: often p = 1/c where “nearby” is distance r
and “far away’ Is distance c r.

Query time is O(ne), data structure size O(n1+r).



Most Common LSH Family

Hyperplane LSH

Introduced in [Charikar 2002], inspired
by [Goemans, Williamson 1995].

Hash function: partition the sphere
with a random hyperplane.



Most Common LSH Family

Hyperplane LSH

Introduced in [Charikar 2002], inspired
by [Goemans, Williamson 1995].

Hash function: partition the sphere
with a random hyperplane.

Locality-sensitive: let & be the angle between points p and q:

Plh(p) = h(g)] = 1— =




Empirical State of the Art, 2015

GloVe dataset
(word embeddings)

100-dim
1.2 mio vectors

source:
ann-benchmarks
Erik Bernhardsson
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GloVe dataset
(word embeddings)

100-dim
1.2 mio vectors

source:
ann-benchmarks
Erik Bernhardsson

Queries per second (s !) - larger is better
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Queries per second (s~ ') - larger is better

Precision-Perf

ormance tradeoff - up and to the right is better
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Empirical State of the Art, 2015

SIFT dataset
(word embeddings)

128-dim
1 mio vectors

source:
ann-benchmarks
Erik Bernhardsson



Empirical State of the Art, 2015

SIFT dataset
(word embeddings)

128-dim
1 mio vectors

source:
ann-benchmarks
Erik Bernhardsson
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Queries per second (s 1)
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Queries per second (s ') - larger is better

§’6gcision-Performance tradeoff - up and to the right is better
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Empirical State of the Art, 2015

Annoy (Approximate Nearest Neighbors Oh Yeah)

"Annoy was built by Erik Bernhardsson in a couple of
afternoons during Hack Week.” (at Spotity in 2013)



Empirical State of the Art, 2015

Annoy (Approximate Nearest Neighbors Oh Yeah)

“Annoy was built by Erik Bernhardsson in a couple of
afternoons during Hack Week.” (at Spotify in 2013)
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Algorithm: Hybrid
oetween hyperplane
nash and kd-tree.




Progress Since Hyperplane

Query time is O(nP), c is the gap between “near” and “far”.

Algorithm P

Hyperplane hash [Charikar 2002] 1/cC
Andoni, Indyk 2006 1/¢c?
Andoni, Indyk, Nguyen, Razenshteyn 2014 7 | 8c?
Voronoi hash [Andoni, Razenshteyn 2015] 1/2c?

For near = 45°: exponent 0.42 (hyperplane) vs 0.18 [AR'15].



Voronol Hash

For each hash function, sample T
random unit vectors g1, go, ... gr.

Hash function

To hash a given point p,

find the closest gi.



Cost of Hash Computation

The Voronol hash requires 003;l ]
many inner products for %0,3 : |
good sensitivity p. Zo2s| )

o2l S~—C0
Time complexity: O(d T) 0.15 _

109  10*  10% 1012 101
Numlber of parts T'
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Hyperplane hash works with a single inner product.

w=p O(d) time



Cost of Hash Computation

The Voronol hash requires 003;l ]
many inner products for %0,3 : |
good sensitivity p. Zo2s| )

o2l S~—C0
Time complexity: O(d T) 0.15 _

109  10*  10% 1012 101
Numlber of parts T'

Hyperplane hash works with a single inner product.

w=p O(d) time

Can we get fast hash functions with good sensitivity?



2. (Cross-Polytope Hash



Cross-Polytope Hash

Spherical LSH for Approximate Nearest
Neighbor Search on Unit Hypersphere

Kengo Terasawa and Yuzuru Tanaka

Meme Media Laboratory, Hokkaido University,
N-13, W-8, Sapporo, 060-8628, Japan
{terasawa,tanaka}@meme.hokudai.ac. jp

Abstract. LSH (Locality Sensitive Hashing) is one of the best known
methods for solving the c-approximate nearest neighbor problem in high
dimensional spaces. This paper presents a variant of the LSH algorithm,
focusing on the special case of where all points in the dataset lie on the
surface of the unit hypersphere in a d-dimensional Euclidean space. The
LSH scheme is based on a family of hash functions that preserves local-
ity of points. This paper points out that when all points are constrained
to lie on the surface of the unit hypersphere, there exist hash functions
that partition the space more efficiently than the previously proposed
methods. The design of these hash functions uses randomly rotated reg-
ular polytopes and it partitions the surface of the unit hypersphere like
a Voronoi diagram. Our new scheme improves the exponent p, the main
indicator of the performance of the LSH algorithm.

1 Introduction
T —



Cross-Polytope Hash

Cross-polytope = |1 unit ball




Cross-Polytope Hash

Cross-polytope = |1 unit ball

Hash function

1. Apply random rotation to
INnput point

2. Map to closest vertex of
the cross-polytope




Our Contributions

1. Analyze the CP hash
2. Multiprobe for the CP hash

3. Fast Implementation



Analysis

V+ By =laX1 + AN

With a Gaussian random rotation, 2=k \

the CP hash has sensitivity p = 1 / 2¢c2.

(Caveats: points on the sphere, r> =+/2.) \

az + By =—(aX; it BYI)



Analysis

V+ Py =aX; + BY;

With a Gaussian random rotation, RN \

the CP hash has sensitivity p = 1 / 2¢c2.

(Caveats: points on the sphere, ro = +/2.) \
az + By =1—(a Xyt BYI) %
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Multiprobe

Problem with LSH in some regimes: requires many tables.

Example: for 108 points and queries with 45°, Hyperplane
LSH needs 725 tables for success probability 90%.



Multiprobe

Problem with LSH in some regimes: requires many tables.

Example: for 108 points and queries with 45°, Hyperplane
LSH needs 725 tables for success probability 90%.

» More memory than the dataset itself.




Multiprobe

Problem with LSH in some regimes: requires many tables.

ldea: use multiple hash locations in the same few tables.
[Lv, Josephson, Wang, Charikar, Li 2007]



Multiprobe

Problem with LSH in some regimes: requires many tables.

ldea: use multiple hash locations in the same few tables.
[Lv, Josephson, Wang, Charikar, Li 2007]

We develop a multiprobe scheme for the CP hash

» How to score hash buckets?



Fast Implementation

Algorithmic side: use fast pseudo-random rotations.

Similar to fast JL [Ailon, Chazelle 2009].
Overall O(d log d) time for one hash function.
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Algorithmic side: use fast pseudo-random rotations.

Similar to fast JL [Ailon, Chazelle 2009].
Overall O(d log d) time for one hash function.

-> Get 2d hash cells in O(d log d) time.

Analysis: [Kennedy, Ward 2016]
[Choromanski, Fagan, Gouy-Pailler, Morvan, Sarlos, Atif 2016]



Fast Implementation

Algorithmic side: use fast pseudo-random rotations.

Similar to fast JL [Ailon, Chazelle 2009].
Overall O(d log d) time for one hash function.

-> Get 2d hash cells in O(d log d) time.

Analysis: [Kennedy, Ward 2016]
[Choromanski, Fagan, Gouy-Pailler, Morvan, Sarlos, Atif 2016]

Implementation side: C++, vectorized code (AVX), etc.
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Queries per second (s~ ') - larger is better

Experiments on GloVe

lf5§cision-Performance tradeoff - up
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Avg. query time

EXperiments vs Annoy
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Library: FALCONN

Fast Approximate Look-up of COsine Nearest Neighbors

), Inc. [US] https://github.com/falconn-lib/falconn

O This repository Pull requests Issues Gist
FALCONN-LIB / FALCONN ® Unwatchv 16 W Unstar 217 YFork 33
<> Code Issues 30 Pull requests 1 Projects 0 Wiki Pulse Graphs Settings
FAst Lookups of Cosine and Other Nearest Neighbors http://falconn-lib.org/ Edit
nearest-neighbor-search Ish cosine-similarity = Manage topics
» 219 commits ¥ 1 branch © 5 releases 22 7 contributors s MIT

Branch: master ~ New pull request Create new file  Upload files = Find file

."L ludwigschmidt committed on GitHub Merge pull request #66 from danix800/patch-1 .. Latest commit 520342e on Nov 30, 2016
8 doc moved markdown docs to the wiki a year ago
B8 external moved numpy.i to external/ and removed an auxiliary swig target from ... 4 months ago
B src std::max is intended 3 months ago
) .gitignore moved the GloVe example to the 'src' directory 5 months ago

E) CONTRIBUTORS.md updating the list of contributors 4 months ago



Since then: Graph Search

Queries per second (s !) - larger is better
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Since then: Graph Search

Queries per second (s~') - larger is better
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3. LSH in Neural Networks



Why Nearest Neighbors and
Neural Networks?

Feature vectors for images, audio, text, etc. are now often
generated by deep neural networks.



Why Nearest Neighbors and
Neural Networks?

Feature vectors for images, audio, text, etc. are now often
generated by deep neural networks.

Neural networks are often used with many output classes.
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Neural Networks
with Many Output Classes

C = #classes
< >

Top layer (fully connected)
one vector ci per class.

Embedding computed
by lower layers.

4

Input X




Neural Networks
with Many Output Classes

C = #classes
< >

Top layer (fully connected)
one vector ci per class.

Embedding computed
by lower layers.

4

Input X

exp(f(x)" c;)
S exp(f(z)Tes)

Softmax function: p(classt|x) =



Prediction Problem

Input: the class vectors c;

Goal: given a new embedding f(x), quickly find
the class vector with maximum inner product.

exp(f(x)"¢;)
> exp(f(z)Te))

p(classt|x) =



Prediction Problem

Input: the class vectors c;

Goal: given a new embedding f(x), quickly find
the class vector with maximum inner product.

® ./’ s

» Nearest neighbor under maximum inner product “similarit

[Vijayanarasimhan, Shlens, Monga, Yagnik 2015], [Spring, Shrivastava 201



| SH in Neural Networks

Crucial property: angle to nearest neighbor.
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| SH in Neural Networks

Crucial property: angle to nearest neighbor.
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Training For Larger Angles

Goal of training the network: minimize cross-entropy 10ss

oss(z,y) ~ —f(z)7e,

= —|lf@)] - lley|l - cos <(f (), cy)



Training For Larger Angles

Goal of training the network: minimize cross-entropy 10ss

oss(z,y) ~ —f(z)7e,

= —|lf@)] - lley|l - cos <(f(z), cy)

/

Constrain via

batch
normalization




Training For Larger Angles

Goal of training the network: minimize cross-entropy 10ss

oss(z,y) ~ —f(z)7e,

=[lf @) - lley|l - cos <(f (), ey)

_— |

Constrain via Constrain via

batch projected gradient
normalization descent




Training For Larger Angles

Goal of training the network: minimize cross-entropy 10ss

oss(z,y) ~ —f(z)7e,

—[lf @) - lleyl - cos <(f (), ¢y)

_— | \

Constrain via Constrain via

Result:

batch projected gradient

S larger angles
normalization descent J J




Experiments for Softmax
Normalization

We control the norm of the class vectors ¢; via projected
gradient descent.
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Experiments for Softmax
Normalization

We control the norm of the class vectors ¢; via projected
gradient descent.
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Experiments for Softmax
Normalization

We control the norm of the class vectors ¢ via projected

gradient descent.

90 1.0
Q .
@ — Unnormalized
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a — Normalized S
Z 60 5 0.6
2 O
= 45 N © 04
c > —— Unnormalized
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© .
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5000

» Angular distance instead of maximum inner product.



Conclusions

* [ ocality-sensitive hashing for nearest neighbor search.
* Cross-polytope hash has good practical performance.

 |SH can be used for fast inference in deep networks.



Conclusions

Locality-sensitive hashing for nearest neighbor search.
* Cross-polytope hash has good practical performance.

| SH can be used for fast inference in deep networks.
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