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Nearest Neighbor Search

1. Build a data structure for a 
given set of points in Rd. 

2. (Repeated) For a given query, 
find the closest point in the 
dataset with “good” probability.

Main goal: fast queries with high accuracy.
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Sub-routine in other algorithms 
• Optimization 
• Cryptanalysis 
• Classification

Input Output
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• O(n log n) setup time 
• O(log n) query time 

Almost ideal data structure!

Problem?
Many applications require 
high-dimensional spaces.

“Curse of dimensionality”
Rd



Rescue from high Dimensionality

Real data often has structure.

Example: significant gap 
between distance from query to 
• nearest neighbor
• average point



Common Methods

Tree data structures 

Locality-sensitive hashing 

Vector quantization 

Nearest-neighbor graphs
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Formal Problem

Spherical case
• Points are on the unit sphere. 
• Angles between most points 

around 90°.

Why?
• Theory: general case reduces to this case. 
• Practice: good model for many (pre-processed) instances.



Formal Problem

Query
Nearest 

Neighbor

↵

Similarity Measures (all equivalent here):

• Cosine Similarity 
• Angular Distance 
• Euclidean Distance

Why? Often (approximately) the goal in practice.
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Main idea: partition Rd randomly such 
that nearby points are more likely to 
appear in the same cell of the partition.



Locality-Sensitive Hashing
Introduced in [Indyk, Motwani, 1998].

Main idea: partition Rd randomly such 
that nearby points are more likely to 
appear in the same cell of the partition.

What about hash functions?

Random hash function 
  = random space partitioning



LSH: Formal Definition
A family of hash functions is (r, c r, p1, p2)-locality sensitive 
if for every p, q in Rd, the following holds: 

• if || p - q || < r, then P[h(p) = h(q)] > p1 
• if || p - q || > c r, then P[h(p) = h(q)] < p2

r cr

p2

p1



LSH: Data Structure
Multiple hash tables with independent hash functions.

Query
1. Find candidates in hash buckets h(q). 
2. Compute exact distances for candidates.



LSH: Theory
Query time quantified as a function of sensitivity ρ.  

Intuitively: gap between “nearby” collision probability 
                 and “far away” collision probability.

⇢ =
log 1/p1
log 1/p2Formally:



LSH: Theory
Query time quantified as a function of sensitivity ρ.  

Intuitively: gap between “nearby” collision probability 
                 and “far away” collision probability.

⇢ =
log 1/p1
log 1/p2Formally:

Query time is O(nρ), data structure size O(n1+ρ).

For example: often ρ ≈ 1/c where “nearby” is distance r 
                      and “far away” is distance c r. 
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Most Common LSH Family

Hyperplane LSH

Introduced in [Charikar 2002], inspired 
by [Goemans, Williamson 1995]. 

Hash function: partition the sphere 
with a random hyperplane.

Locality-sensitive: let     be the angle between points p and q:↵

P [h(p) = h(q)] = 1� ↵

⇡
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Annoy (Approximate Nearest Neighbors Oh Yeah) 

   “Annoy was built by Erik Bernhardsson in a couple of     
    afternoons during Hack Week.”  (at Spotify in 2013)
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Annoy (Approximate Nearest Neighbors Oh Yeah) 

   “Annoy was built by Erik Bernhardsson in a couple of     
    afternoons during Hack Week.”  (at Spotify in 2013)

Empirical State of the Art, 2015

Algorithm: Hybrid 
  between hyperplane  
  hash and kd-tree.



Progress Since Hyperplane

Algorithm ρ

Hyperplane hash [Charikar 2002] 1 / c

Andoni, Indyk 2006 1 / c2

Andoni, Indyk, Nguyen, Razenshteyn 2014 7 / 8c2

Voronoi hash [Andoni, Razenshteyn 2015] 1 / 2c2

Query time is O(nρ),   c is the gap between “near” and “far”.

For near = 45°: exponent 0.42 (hyperplane) vs 0.18 [AR’15].



Voronoi Hash

For each hash function, sample T 
random unit vectors g1, g2, … gT.

To hash a given point p, 
find the closest gi.

Hash function



Cost of Hash Computation

The Voronoi hash requires 
many inner products for 
good sensitivity ρ.
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The Voronoi hash requires 
many inner products for 
good sensitivity ρ.
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Time complexity: O(d T)

Hyperplane hash works with a single inner product. 
O(d) time

Can we get fast hash functions with good sensitivity?
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Cross-Polytope Hash

Cross-polytope = l1 unit ball

Hash function

1. Apply random rotation to 
input point 

2. Map to closest vertex of 
the cross-polytope



Our Contributions

1. Analyze the CP hash 

2. Multiprobe for the CP hash 

3. Fast Implementation



Analysis
With a Gaussian random rotation, 
the CP hash has sensitivity ρ ≈ 1 / 2c2.

(Caveats: points on the sphere, r2 = √2.)
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Analysis
With a Gaussian random rotation, 
the CP hash has sensitivity ρ ≈ 1 / 2c2.

(Caveats: points on the sphere, r2 = √2.)

Establish lower bound for 
ρ vs #parts trade-off.
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Cross-polytope LSH

Lower bound
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Multiprobe
Problem with LSH in some regimes: requires many tables. 

Example: for 106 points and queries with 45°, Hyperplane    
  LSH needs 725 tables for success probability 90%.



Multiprobe
Problem with LSH in some regimes: requires many tables. 

Example: for 106 points and queries with 45°, Hyperplane    
  LSH needs 725 tables for success probability 90%.

More memory than the dataset itself.
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Multiprobe

Idea: use multiple hash locations in the same few tables. 
         [Lv, Josephson, Wang, Charikar, Li 2007]

Problem with LSH in some regimes: requires many tables.

We develop a multiprobe scheme for the CP hash

How to score hash buckets?
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Fast Implementation

Algorithmic side: use fast pseudo-random rotations. 

    Similar to fast JL [Ailon, Chazelle 2009]. 
    Overall O(d log d) time for one hash function.

Get 2d hash cells in O(d log d) time.

Analysis: [Kennedy, Ward 2016] 
                    [Choromanski, Fagan, Gouy-Pailler, Morvan, Sarlós, Atif 2016]

Implementation side:  C++, vectorized code (AVX), etc.
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Experiments on GloVe



Experiments vs Annoy



Library: FALCONN
Fast Approximate Look-up of COsine Nearest Neighbors



Since then: Graph Search



Since then: Graph Search

But: 1000x longer setup time
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      generated by deep neural networks.



Why Nearest Neighbors and 
Neural Networks?

Neural networks are often used with many output classes.

Language models Recommender 
systems

Image 
annotation

Feature vectors for images, audio, text, etc. are now often 
      generated by deep neural networks.



Neural Networks 
with Many Output Classes

f(x)

Softmax

C = #classes

Input x

Embedding computed 
      by lower layers.

Top layer (fully connected) 
      one vector ci per class.



Neural Networks 
with Many Output Classes

f(x)

Softmax

C = #classes

Input x

Embedding computed 
      by lower layers.

p(class i |x) =
exp(f(x)T ci)PC
j=1 exp(f(x)T cj)

Top layer (fully connected) 
      one vector ci per class.

Softmax function:



Prediction Problem
Input: the class vectors ci

Goal: given a new embedding f(x), quickly find 
                 the class vector with maximum inner product. 

p(class i |x) =
exp(f(x)T ci)PC
j=1 exp(f(x)T cj)



Prediction Problem
Input: the class vectors ci

Goal: given a new embedding f(x), quickly find 
                 the class vector with maximum inner product. 

Nearest neighbor under maximum inner product “similarity”
[Vijayanarasimhan, Shlens, Monga, Yagnik 2015], [Spring, Shrivastava 2016]



LSH in Neural Networks
Crucial property: angle to nearest neighbor.

Query
Nearest 

Neighbor

↵



LSH in Neural Networks
Crucial property: angle to nearest neighbor.

10x faster softmax
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Goal of training the network: minimize cross-entropy loss
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Training For Larger Angles

loss(x, y) ⇡ �f(x)T cy

= �kf(x)k · kcyk · cos^(f(x), cy)

Goal of training the network: minimize cross-entropy loss

Constrain via 
batch 

normalization

Constrain via 
projected gradient 

descent
Result: 

larger angles
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Normalization

We control the norm of the class vectors ci via projected 
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Experiments for Softmax 
Normalization

We control the norm of the class vectors ci via projected 
gradient descent.

 Angular distance instead of maximum inner product.
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Thank You!


