
Locality-Sensitive Hashing:
Theory and Applications

Ludwig Schmidt
MIT → Google Brain → UC Berkeley

Based on joint works with Alex Andoni, Piotr Indyk, Thijs
Laarhoven, Ilya Razenshteyn, and Kunal Talwar.

Nearest Neighbor Search

1. Build a data structure for a
given set of points in Rd.

2. (Repeated) For a given query,
find the closest point in the
dataset with “good” probability.

Main goal: fast queries with high accuracy.

Motivation
Large number of applications

Data retrieval
• Images (SIFT, …)
• Text (tf-idf, …)
• Audio (i-vectors, …)

Input Output

Motivation
Large number of applications

Data retrieval
• Images (SIFT, …)
• Text (tf-idf, …)
• Audio (i-vectors, …)

Sub-routine in other algorithms
• Optimization
• Cryptanalysis
• Classification

Input Output

A Simple Problem?

In 2D: Voronoi diagram
• O(n log n) setup time
• O(log n) query time

Almost ideal data structure!

A Simple Problem?

In 2D: Voronoi diagram
• O(n log n) setup time
• O(log n) query time

Almost ideal data structure!

Problem?
Many applications require
high-dimensional spaces.

“Curse of dimensionality”
Rd

Rescue from high Dimensionality

Real data often has structure.

Example: significant gap
between distance from query to
• nearest neighbor
• average point

Common Methods

Tree data structures

Locality-sensitive hashing

Vector quantization

Nearest-neighbor graphs

1. Locality-Sensitive Hashing

2. Cross-Polytope Hash

3. LSH in Neural Networks

1. Locality-Sensitive Hashing

2. Cross-Polytope Hash

3. LSH in Neural Networks

Formal Problem

Spherical case
• Points are on the unit sphere.
• Angles between most points

around 90°.

Formal Problem

Spherical case
• Points are on the unit sphere.
• Angles between most points

around 90°.

Why?
• Theory: general case reduces to this case.
• Practice: good model for many (pre-processed) instances.

Formal Problem

Query
Nearest

Neighbor

↵

Similarity Measures (all equivalent here):

• Cosine Similarity
• Angular Distance
• Euclidean Distance

Why? Often (approximately) the goal in practice.

Locality-Sensitive Hashing
Introduced in [Indyk, Motwani, 1998].

Main idea: partition Rd randomly such
that nearby points are more likely to
appear in the same cell of the partition.

Locality-Sensitive Hashing
Introduced in [Indyk, Motwani, 1998].

Main idea: partition Rd randomly such
that nearby points are more likely to
appear in the same cell of the partition.

What about hash functions?

Random hash function
 = random space partitioning

LSH: Formal Definition
A family of hash functions is (r, c r, p1, p2)-locality sensitive
if for every p, q in Rd, the following holds:

• if || p - q || < r, then P[h(p) = h(q)] > p1
• if || p - q || > c r, then P[h(p) = h(q)] < p2

r cr

p2

p1

LSH: Data Structure
Multiple hash tables with independent hash functions.

Query
1. Find candidates in hash buckets h(q).
2. Compute exact distances for candidates.

LSH: Theory
Query time quantified as a function of sensitivity ρ.

Intuitively: gap between “nearby” collision probability
 and “far away” collision probability.

⇢ =
log 1/p1
log 1/p2Formally:

LSH: Theory
Query time quantified as a function of sensitivity ρ.

Intuitively: gap between “nearby” collision probability
 and “far away” collision probability.

⇢ =
log 1/p1
log 1/p2Formally:

Query time is O(nρ), data structure size O(n1+ρ).

For example: often ρ ≈ 1/c where “nearby” is distance r
 and “far away” is distance c r.

Most Common LSH Family

Hyperplane LSH

Introduced in [Charikar 2002], inspired
by [Goemans, Williamson 1995].

Hash function: partition the sphere
with a random hyperplane.

Most Common LSH Family

Hyperplane LSH

Introduced in [Charikar 2002], inspired
by [Goemans, Williamson 1995].

Hash function: partition the sphere
with a random hyperplane.

Locality-sensitive: let be the angle between points p and q:↵

P [h(p) = h(q)] = 1� ↵

⇡

Empirical State of the Art, 2015

GloVe dataset
(word embeddings)

100-dim
1.2 mio vectors

Source:
ann-benchmarks
Erik Bernhardsson

Empirical State of the Art, 2015

GloVe dataset
(word embeddings)

100-dim
1.2 mio vectors

Source:
ann-benchmarks
Erik Bernhardsson

Empirical State of the Art, 2015

SIFT dataset
(word embeddings)

128-dim
1 mio vectors

Source:
ann-benchmarks
Erik Bernhardsson

Empirical State of the Art, 2015

SIFT dataset
(word embeddings)

128-dim
1 mio vectors

Source:
ann-benchmarks
Erik Bernhardsson

Annoy (Approximate Nearest Neighbors Oh Yeah)

 “Annoy was built by Erik Bernhardsson in a couple of
 afternoons during Hack Week.” (at Spotify in 2013)

Empirical State of the Art, 2015

Annoy (Approximate Nearest Neighbors Oh Yeah)

 “Annoy was built by Erik Bernhardsson in a couple of
 afternoons during Hack Week.” (at Spotify in 2013)

Empirical State of the Art, 2015

Algorithm: Hybrid
 between hyperplane
 hash and kd-tree.

Progress Since Hyperplane

Algorithm ρ

Hyperplane hash [Charikar 2002] 1 / c

Andoni, Indyk 2006 1 / c2

Andoni, Indyk, Nguyen, Razenshteyn 2014 7 / 8c2

Voronoi hash [Andoni, Razenshteyn 2015] 1 / 2c2

Query time is O(nρ), c is the gap between “near” and “far”.

For near = 45°: exponent 0.42 (hyperplane) vs 0.18 [AR’15].

Voronoi Hash

For each hash function, sample T
random unit vectors g1, g2, … gT.

To hash a given point p,
find the closest gi.

Hash function

Cost of Hash Computation

The Voronoi hash requires
many inner products for
good sensitivity ρ.

10161012108104100
0.15

0.2

0.25

0.3

0.35

0.4

Number of parts T

Se
ns

itiv
ity

⇢

Time complexity: O(d T)

Cost of Hash Computation

The Voronoi hash requires
many inner products for
good sensitivity ρ.

10161012108104100
0.15

0.2

0.25

0.3

0.35

0.4

Number of parts T

Se
ns

itiv
ity

⇢

Time complexity: O(d T)

Hyperplane hash works with a single inner product.
O(d) time

Cost of Hash Computation

The Voronoi hash requires
many inner products for
good sensitivity ρ.

10161012108104100
0.15

0.2

0.25

0.3

0.35

0.4

Number of parts T

Se
ns

itiv
ity

⇢

Time complexity: O(d T)

Hyperplane hash works with a single inner product.
O(d) time

Can we get fast hash functions with good sensitivity?

1. Locality-Sensitive Hashing

2. Cross-Polytope Hash

3. LSH in Neural Networks

Cross-Polytope Hash

Cross-Polytope Hash

Cross-polytope = l1 unit ball

Cross-Polytope Hash

Cross-polytope = l1 unit ball

Hash function

1. Apply random rotation to
input point

2. Map to closest vertex of
the cross-polytope

Our Contributions

1. Analyze the CP hash

2. Multiprobe for the CP hash

3. Fast Implementation

Analysis
With a Gaussian random rotation,
the CP hash has sensitivity ρ ≈ 1 / 2c2.

(Caveats: points on the sphere, r2 = √2.)

x = �X1

x = X1

↵x+ �y = ↵X1 + �Y1

↵x+ �y = �(↵X1 + �Y1)

Analysis
With a Gaussian random rotation,
the CP hash has sensitivity ρ ≈ 1 / 2c2.

(Caveats: points on the sphere, r2 = √2.)

Establish lower bound for
ρ vs #parts trade-off.

10161012108104100
0.15

0.2

0.25

0.3

0.35

0.4

Number of parts T

S
e
n
s
it
iv
it
y
⇢

Cross-polytope LSH

Lower bound

x = �X1

x = X1

↵x+ �y = ↵X1 + �Y1

↵x+ �y = �(↵X1 + �Y1)

Multiprobe
Problem with LSH in some regimes: requires many tables.

Example: for 106 points and queries with 45°, Hyperplane
 LSH needs 725 tables for success probability 90%.

Multiprobe
Problem with LSH in some regimes: requires many tables.

Example: for 106 points and queries with 45°, Hyperplane
 LSH needs 725 tables for success probability 90%.

More memory than the dataset itself.

Multiprobe

Idea: use multiple hash locations in the same few tables.
 [Lv, Josephson, Wang, Charikar, Li 2007]

Problem with LSH in some regimes: requires many tables.

Multiprobe

Idea: use multiple hash locations in the same few tables.
 [Lv, Josephson, Wang, Charikar, Li 2007]

Problem with LSH in some regimes: requires many tables.

We develop a multiprobe scheme for the CP hash

How to score hash buckets?

Fast Implementation

Algorithmic side: use fast pseudo-random rotations.

 Similar to fast JL [Ailon, Chazelle 2009].
 Overall O(d log d) time for one hash function.

Fast Implementation

Algorithmic side: use fast pseudo-random rotations.

 Similar to fast JL [Ailon, Chazelle 2009].
 Overall O(d log d) time for one hash function.

Get 2d hash cells in O(d log d) time.

Analysis: [Kennedy, Ward 2016]
 [Choromanski, Fagan, Gouy-Pailler, Morvan, Sarlós, Atif 2016]

Fast Implementation

Algorithmic side: use fast pseudo-random rotations.

 Similar to fast JL [Ailon, Chazelle 2009].
 Overall O(d log d) time for one hash function.

Get 2d hash cells in O(d log d) time.

Analysis: [Kennedy, Ward 2016]
 [Choromanski, Fagan, Gouy-Pailler, Morvan, Sarlós, Atif 2016]

Implementation side: C++, vectorized code (AVX), etc.

Experiments vs Hyperplane

Experiments on GloVe

Experiments vs Annoy

Library: FALCONN
Fast Approximate Look-up of COsine Nearest Neighbors

Since then: Graph Search

Since then: Graph Search

But: 1000x longer setup time

1. Locality-Sensitive Hashing

2. Cross-Polytope Hash

3. LSH in Neural Networks

Why Nearest Neighbors and
Neural Networks?

Feature vectors for images, audio, text, etc. are now often
 generated by deep neural networks.

Why Nearest Neighbors and
Neural Networks?

Neural networks are often used with many output classes.

Language models Recommender
systems

Image
annotation

Feature vectors for images, audio, text, etc. are now often
 generated by deep neural networks.

Neural Networks
with Many Output Classes

f(x)

Softmax

C = #classes

Input x

Embedding computed
 by lower layers.

Top layer (fully connected)
 one vector ci per class.

Neural Networks
with Many Output Classes

f(x)

Softmax

C = #classes

Input x

Embedding computed
 by lower layers.

p(class i |x) =
exp(f(x)T ci)PC
j=1 exp(f(x)T cj)

Top layer (fully connected)
 one vector ci per class.

Softmax function:

Prediction Problem
Input: the class vectors ci

Goal: given a new embedding f(x), quickly find
 the class vector with maximum inner product.

p(class i |x) =
exp(f(x)T ci)PC
j=1 exp(f(x)T cj)

Prediction Problem
Input: the class vectors ci

Goal: given a new embedding f(x), quickly find
 the class vector with maximum inner product.

Nearest neighbor under maximum inner product “similarity”
[Vijayanarasimhan, Shlens, Monga, Yagnik 2015], [Spring, Shrivastava 2016]

LSH in Neural Networks
Crucial property: angle to nearest neighbor.

Query
Nearest

Neighbor

↵

LSH in Neural Networks
Crucial property: angle to nearest neighbor.

10x faster softmax

Training For Larger Angles

loss(x, y) ⇡ �f(x)T cy

= �kf(x)k · kcyk · cos^(f(x), cy)

Goal of training the network: minimize cross-entropy loss

Training For Larger Angles

loss(x, y) ⇡ �f(x)T cy

= �kf(x)k · kcyk · cos^(f(x), cy)

Goal of training the network: minimize cross-entropy loss

Constrain via
batch

normalization

Training For Larger Angles

loss(x, y) ⇡ �f(x)T cy

= �kf(x)k · kcyk · cos^(f(x), cy)

Goal of training the network: minimize cross-entropy loss

Constrain via
batch

normalization

Constrain via
projected gradient

descent

Training For Larger Angles

loss(x, y) ⇡ �f(x)T cy

= �kf(x)k · kcyk · cos^(f(x), cy)

Goal of training the network: minimize cross-entropy loss

Constrain via
batch

normalization

Constrain via
projected gradient

descent
Result:

larger angles

Experiments for Softmax
Normalization

We control the norm of the class vectors ci via projected
gradient descent.

Experiments for Softmax
Normalization

We control the norm of the class vectors ci via projected
gradient descent.

Experiments for Softmax
Normalization

We control the norm of the class vectors ci via projected
gradient descent.

 Angular distance instead of maximum inner product.

Conclusions
• Locality-sensitive hashing for nearest neighbor search.
• Cross-polytope hash has good practical performance.
• LSH can be used for fast inference in deep networks.

Conclusions
• Locality-sensitive hashing for nearest neighbor search.
• Cross-polytope hash has good practical performance.
• LSH can be used for fast inference in deep networks.

Thank You!

